import pickle
from dagster import Field, IOManager, StringSource, check, io_manager
from dagster.utils import PICKLE_PROTOCOL
class PickledObjectS3IOManager(IOManager):
def __init__(
self,
s3_bucket,
s3_session,
s3_prefix=None,
):
self.bucket = check.str_param(s3_bucket, "s3_bucket")
self.s3_prefix = check.str_param(s3_prefix, "s3_prefix")
self.s3 = s3_session
self.s3.head_bucket(Bucket=self.bucket)
def _get_path(self, context):
return "/".join([self.s3_prefix, "storage", *context.get_run_scoped_output_identifier()])
def _last_key(self, key):
if "/" not in key:
return key
comps = key.split("/")
return comps[-1]
def _rm_object(self, key):
check.str_param(key, "key")
check.param_invariant(len(key) > 0, "key")
def delete_for_results(store, results):
store.s3.delete_objects(
Bucket=store.bucket,
Delete={"Objects": [{"Key": result["Key"]} for result in results["Contents"]]},
)
if self._has_object(key):
results = self.s3.list_objects_v2(Bucket=self.bucket, Prefix=key)
delete_for_results(self, results)
continuation = results["IsTruncated"]
while continuation:
continuation_token = results["NextContinuationToken"]
results = self.s3.list_objects_v2(
Bucket=self.bucket, Prefix=key, ContinuationToken=continuation_token
)
delete_for_results(self, results)
continuation = results["IsTruncated"]
def _has_object(self, key):
check.str_param(key, "key")
check.param_invariant(len(key) > 0, "key")
key_count = self.s3.list_objects_v2(Bucket=self.bucket, Prefix=key)["KeyCount"]
return bool(key_count > 0)
def _uri_for_key(self, key):
check.str_param(key, "key")
return "s3://" + self.bucket + "/" + "{key}".format(key=key)
def load_input(self, context):
key = self._get_path(context.upstream_output)
context.log.debug(f"Loading S3 object from: {self._uri_for_key(key)}")
obj = pickle.loads(self.s3.get_object(Bucket=self.bucket, Key=key)["Body"].read())
return obj
def handle_output(self, context, obj):
key = self._get_path(context)
context.log.debug(f"Writing S3 object at: {self._uri_for_key(key)}")
if self._has_object(key):
context.log.warning(f"Removing existing S3 key: {key}")
self._rm_object(key)
pickled_obj = pickle.dumps(obj, PICKLE_PROTOCOL)
self.s3.put_object(Bucket=self.bucket, Key=key, Body=pickled_obj)
[docs]@io_manager(
config_schema={
"s3_bucket": Field(StringSource),
"s3_prefix": Field(StringSource, is_required=False, default_value="dagster"),
},
required_resource_keys={"s3"},
)
def s3_pickle_io_manager(init_context):
"""Persistent IO manager using S3 for storage.
Serializes objects via pickling. Suitable for objects storage for distributed executors, so long
as each execution node has network connectivity and credentials for S3 and the backing bucket.
Attach this resource definition to a :py:class:`~dagster.ModeDefinition`
in order to make it available to your pipeline:
.. code-block:: python
pipeline_def = PipelineDefinition(
mode_defs=[
ModeDefinition(
resource_defs={'io_manager': s3_pickle_io_manager, "s3": s3_resource, ...},
), ...
], ...
)
You may configure this storage as follows:
.. code-block:: YAML
resources:
io_manager:
config:
s3_bucket: my-cool-bucket
s3_prefix: good/prefix-for-files-
"""
s3_session = init_context.resources.s3
s3_bucket = init_context.resource_config["s3_bucket"]
s3_prefix = init_context.resource_config.get("s3_prefix") # s3_prefix is optional
pickled_io_manager = PickledObjectS3IOManager(s3_bucket, s3_session, s3_prefix=s3_prefix)
return pickled_io_manager