import inspect
from functools import update_wrapper, wraps
from typing import Any, Callable, Dict, Generator, List, Optional, Set, Tuple, Union
from dagster import check
from dagster.core.errors import DagsterInvalidDefinitionError, DagsterInvariantViolationError
from dagster.core.types.dagster_type import DagsterTypeKind
from dagster.seven import funcsigs
from ...decorator_utils import (
positional_arg_name_list,
split_function_parameters,
validate_decorated_fn_positionals,
)
from ..events import AssetMaterialization, ExpectationResult, Materialization, Output
from ..inference import infer_input_props, infer_output_props
from ..input import InputDefinition
from ..output import OutputDefinition
from ..solid import SolidDefinition
class _Solid:
def __init__(
self,
name: Optional[str] = None,
input_defs: Optional[List[InputDefinition]] = None,
output_defs: Optional[List[OutputDefinition]] = None,
description: Optional[str] = None,
required_resource_keys: Optional[Set[str]] = None,
config_schema: Optional[Union[Any, Dict[str, Any]]] = None,
tags: Optional[Dict[str, Any]] = None,
version: Optional[str] = None,
):
self.name = check.opt_str_param(name, "name")
self.input_defs = check.opt_list_param(input_defs, "input_defs", InputDefinition)
self.output_defs = check.opt_nullable_list_param(
output_defs, "output_defs", OutputDefinition
)
self.description = check.opt_str_param(description, "description")
# these will be checked within SolidDefinition
self.required_resource_keys = required_resource_keys
self.tags = tags
self.version = version
# config will be checked within SolidDefinition
self.config_schema = config_schema
def __call__(self, fn: Callable[..., Any]) -> SolidDefinition:
check.callable_param(fn, "fn")
if not self.name:
self.name = fn.__name__
if self.output_defs is None:
output_defs = [OutputDefinition.create_from_inferred(infer_output_props(fn))]
elif len(self.output_defs) == 1:
output_defs = [self.output_defs[0].combine_with_inferred(infer_output_props(fn))]
else:
output_defs = self.output_defs
resolved_input_defs, positional_inputs = resolve_checked_solid_fn_inputs(
decorator_name="@solid",
fn_name=self.name,
compute_fn=fn,
explicit_input_defs=self.input_defs,
has_context_arg=True,
exclude_nothing=True,
)
compute_fn = _create_solid_compute_wrapper(fn, resolved_input_defs, output_defs)
solid_def = SolidDefinition(
name=self.name,
input_defs=resolved_input_defs,
output_defs=output_defs,
compute_fn=compute_fn,
config_schema=self.config_schema,
description=self.description or fn.__doc__,
required_resource_keys=self.required_resource_keys,
tags=self.tags,
positional_inputs=positional_inputs,
version=self.version,
)
update_wrapper(solid_def, fn)
return solid_def
[docs]def solid(
name: Union[Callable[..., Any], Optional[str]] = None,
description: Optional[str] = None,
input_defs: Optional[List[InputDefinition]] = None,
output_defs: Optional[List[OutputDefinition]] = None,
config_schema: Optional[Union[Any, Dict[str, Any]]] = None,
required_resource_keys: Optional[Set[str]] = None,
tags: Optional[Dict[str, Any]] = None,
version: Optional[str] = None,
) -> Union[_Solid, SolidDefinition]:
"""Create a solid with the specified parameters from the decorated function.
This shortcut simplifies the core :class:`SolidDefinition` API by exploding arguments into
kwargs of the decorated compute function and omitting additional parameters when they are not
needed.
Input and output definitions will be inferred from the type signature of the decorated function
if not explicitly provided.
The decorated function will be used as the solid's compute function. The signature of the
decorated function is more flexible than that of the ``compute_fn`` in the core API; it may:
1. Return a value. This value will be wrapped in an :py:class:`Output` and yielded by the compute function.
2. Return an :py:class:`Output`. This output will be yielded by the compute function.
3. Yield :py:class:`Output` or other :ref:`event objects <events>`. Same as default compute behavior.
Note that options 1) and 2) are incompatible with yielding other events -- if you would like
to decorate a function that yields events, it must also wrap its eventual output in an
:py:class:`Output` and yield it.
@solid supports ``async def`` functions as well, including async generators when yielding multiple
events or outputs. Note that async solids will generally be run on their own unless using a custom
:py:class:`Executor` implementation that supports running them together.
Args:
name (Optional[str]): Name of solid. Must be unique within any :py:class:`PipelineDefinition`
using the solid.
description (Optional[str]): Human-readable description of this solid. If not provided, and
the decorated function has docstring, that docstring will be used as the description.
input_defs (Optional[List[InputDefinition]]):
Information about the inputs to the solid. Information provided here will be combined
with what can be inferred from the function signature, with these explicit InputDefinitions
taking precedence.
output_defs (Optional[List[OutputDefinition]]):
Information about the solids outputs. Information provided here will be combined with
what can be inferred from the return type signature if there is only one OutputDefinition
and the function does not use yield.
config_schema (Optional[ConfigSchema): The schema for the config. If set, Dagster will check
that config provided for the solid matches this schema and fail if it does not. If not
set, Dagster will accept any config provided for the solid.
required_resource_keys (Optional[Set[str]]): Set of resource handles required by this solid.
tags (Optional[Dict[str, Any]]): Arbitrary metadata for the solid. Frameworks may
expect and require certain metadata to be attached to a solid. Users should generally
not set metadata directly. Values that are not strings will be json encoded and must meet
the criteria that `json.loads(json.dumps(value)) == value`.
version (Optional[str]): (Experimental) The version of the solid's compute_fn. Two solids should have
the same version if and only if they deterministically produce the same outputs when
provided the same inputs.
Examples:
.. code-block:: python
@solid
def hello_world(_context):
print('hello')
@solid
def hello_world(_context):
return {'foo': 'bar'}
@solid
def hello_world(_context):
return Output(value={'foo': 'bar'})
@solid
def hello_world(_context):
yield Output(value={'foo': 'bar'})
@solid
def hello_world(_context, foo):
return foo
@solid(
input_defs=[InputDefinition(name="foo", str)],
output_defs=[OutputDefinition(str)]
)
def hello_world(_context, foo):
# explicitly type and name inputs and outputs
return foo
@solid
def hello_world(_context, foo: str) -> str:
# same as above inferred from signature
return foo
@solid
def hello_world(context, foo):
context.log.info('log something')
return foo
@solid(
config_schema={'str_value' : Field(str)}
)
def hello_world(context, foo):
# context.solid_config is a dictionary with 'str_value' key
return foo + context.solid_config['str_value']
"""
# This case is for when decorator is used bare, without arguments. e.g. @solid versus @solid()
if callable(name):
check.invariant(input_defs is None)
check.invariant(output_defs is None)
check.invariant(description is None)
check.invariant(config_schema is None)
check.invariant(required_resource_keys is None)
check.invariant(tags is None)
check.invariant(version is None)
return _Solid()(name)
return _Solid(
name=name,
input_defs=input_defs,
output_defs=output_defs,
config_schema=config_schema,
description=description,
required_resource_keys=required_resource_keys,
tags=tags,
version=version,
)
def _coerce_solid_output_to_iterator(result, context, output_defs):
if isinstance(result, (AssetMaterialization, Materialization, ExpectationResult)):
raise DagsterInvariantViolationError(
(
"Error in solid {solid_name}: If you are returning an AssetMaterialization "
"or an ExpectationResult from solid you must yield them to avoid "
"ambiguity with an implied result from returning a value.".format(
solid_name=context.solid.name
)
)
)
if isinstance(result, Output):
yield result
elif len(output_defs) == 1:
if result is None and output_defs[0].is_required is False:
context.log.warn(
'Value "None" returned for non-required output "{output_name}". '
"This value will be passed to downstream solids. For conditional execution use\n"
' yield Output(value, "{output_name}")\n'
"when you want the downstream solids to execute, "
"and do not yield it when you want downstream solids to skip.".format(
output_name=output_defs[0].name
)
)
yield Output(value=result, output_name=output_defs[0].name)
elif result is not None:
if not output_defs:
raise DagsterInvariantViolationError(
(
"Error in solid {solid_name}: Unexpectedly returned output {result} "
"of type {type_}. Solid is explicitly defined to return no "
"results."
).format(solid_name=context.solid.name, result=result, type_=type(result))
)
raise DagsterInvariantViolationError(
(
"Error in solid {solid_name}: Solid unexpectedly returned "
"output {result} of type {type_}. Should "
"be a generator, containing or yielding "
"{n_results} results: {{{expected_results}}}."
).format(
solid_name=context.solid.name,
result=result,
type_=type(result),
n_results=len(output_defs),
expected_results=", ".join(
[
"'{result_name}': {dagster_type}".format(
result_name=output_def.name,
dagster_type=output_def.dagster_type,
)
for output_def in output_defs
]
),
)
)
async def _coerce_async_solid_to_async_gen(awaitable, context, output_defs):
result = await awaitable
for event in _coerce_solid_output_to_iterator(result, context, output_defs):
yield event
def _create_solid_compute_wrapper(
fn: Callable, input_defs: List[InputDefinition], output_defs: List[OutputDefinition]
):
check.callable_param(fn, "fn")
check.list_param(input_defs, "input_defs", of_type=InputDefinition)
check.list_param(output_defs, "output_defs", of_type=OutputDefinition)
input_names = [
input_def.name
for input_def in input_defs
if not input_def.dagster_type.kind == DagsterTypeKind.NOTHING
]
@wraps(fn)
def compute(context, input_defs) -> Generator[Output, None, None]:
kwargs = {}
for input_name in input_names:
kwargs[input_name] = input_defs[input_name]
result = fn(context, **kwargs)
if inspect.isgenerator(result):
return result
elif inspect.isasyncgen(result):
return result
elif inspect.iscoroutine(result):
return _coerce_async_solid_to_async_gen(result, context, output_defs)
else:
return _coerce_solid_output_to_iterator(result, context, output_defs)
return compute
def resolve_checked_solid_fn_inputs(
decorator_name: str,
fn_name: str,
compute_fn: Callable[..., Any],
explicit_input_defs: List[InputDefinition],
has_context_arg: bool,
exclude_nothing: bool, # should Nothing type inputs be excluded from compute_fn args
) -> Tuple[List[InputDefinition], List[str]]:
"""
Validate provided input definitions and infer the remaining from the type signature of the compute_fn
Returns the resolved set of InputDefinitions and the positions of input names (which is used
during graph composition).
"""
expected_positionals = ["context"] if has_context_arg else []
if exclude_nothing:
explicit_names = set(
inp.name
for inp in explicit_input_defs
if not inp.dagster_type.kind == DagsterTypeKind.NOTHING
)
nothing_names = set(
inp.name
for inp in explicit_input_defs
if inp.dagster_type.kind == DagsterTypeKind.NOTHING
)
else:
explicit_names = set(inp.name for inp in explicit_input_defs)
nothing_names = set()
# Currently being super strict about naming. Might be a good idea to relax. Starting strict.
fn_positionals, input_args = split_function_parameters(compute_fn, expected_positionals)
# Validate Positional Parameters
missing_positional = validate_decorated_fn_positionals(fn_positionals, expected_positionals)
if missing_positional:
raise DagsterInvalidDefinitionError(
"{decorator_name} '{solid_name}' decorated function does not have required positional "
"parameter '{missing_param}'. Solid functions should only have keyword arguments "
"that match input names and a first positional parameter named 'context'.".format(
decorator_name=decorator_name, solid_name=fn_name, missing_param=missing_positional
)
)
# Validate non positional parameters
used_inputs = set()
inputs_to_infer = set()
has_kwargs = False
for param in input_args:
if param.kind == funcsigs.Parameter.VAR_KEYWORD:
has_kwargs = True
elif param.kind == funcsigs.Parameter.VAR_POSITIONAL:
raise DagsterInvalidDefinitionError(
f"{decorator_name} '{fn_name}' decorated function has positional vararg parameter "
f"'{param}'. Solid functions should only have keyword arguments that match "
"input names and a first positional parameter named 'context'."
)
else:
if param.name not in explicit_names:
if param.name in nothing_names:
raise DagsterInvalidDefinitionError(
f"{decorator_name} '{fn_name}' decorated function has parameter '{param.name}' that is "
"one of the solid input_defs of type 'Nothing' which should not be included since "
"no data will be passed for it. "
)
else:
inputs_to_infer.add(param.name)
else:
used_inputs.add(param.name)
undeclared_inputs = explicit_names - used_inputs
if not has_kwargs and undeclared_inputs:
undeclared_inputs_printed = ", '".join(undeclared_inputs)
raise DagsterInvalidDefinitionError(
f"{decorator_name} '{fn_name}' decorated function does not have parameter(s) "
f"'{undeclared_inputs_printed}', which are in solid's input_defs. Solid functions "
"should only have keyword arguments that match input names and a first positional "
"parameter named 'context'."
)
inferred_props = {
inferred.name: inferred for inferred in infer_input_props(compute_fn, has_context_arg)
}
input_defs = []
for input_def in explicit_input_defs:
if input_def.name in inferred_props:
# combine any information missing on the explicit def that can be inferred
input_defs.append(input_def.combine_with_inferred(inferred_props[input_def.name]))
else:
# pass through those that don't have any inference info, such as Nothing type inputs
input_defs.append(input_def)
# build defs from the inferred props for those without explicit entries
input_defs.extend(
InputDefinition.create_from_inferred(inferred)
for inferred in inferred_props.values()
if inferred.name in inputs_to_infer
)
return input_defs, positional_arg_name_list(input_args)